WAVE PROPERTIES OF PARTICLES

- 1. De Broglie waves.
- 2. Waves of what?
- 3. Describing a wave.
- 4. Phase and group velocities.
- 5. Particle diffraction.
- 6. Particle in a box.
- 7. Uncertainty principle I.
- 8. Uncertainty principle II.
- 9. Applying the uncertainty principle.

INTRODUCTION

In 1924, de Broglie proposed that **moving objects** have **wave** as well as particle characteristics.

A photon of light of frequency v has the momentum:

$$p = \frac{hv}{c} = \frac{h}{\lambda}$$

Therefore, the wavelength of a photon is specified by its momentum by:

$$\lambda = \frac{h}{p}$$

De Broglie suggested that this a general equation that applies to material particles as well as photons.

The momentum of a particle of mass m and velocity υ is:

 $p = \gamma m \upsilon$

Its de Broglie wavelength is:

$$\lambda = \frac{h}{\gamma m \upsilon}$$

The wave and particle duality of a moving body can never be observed at the same time. ← just like in EM waves.

In certain situations a moving body resembles a wave and in others it resembles a particle.

Which set of properties is most conspicuous?

This depends on how its de Broglie wavelength dimension compares with the dimension whatever it interact with.

These waves were called matter waves. ← is there an experiment that verifies this?

Example 3.1:

Find the de Broglie wavelengths of: (a) A 46-g golf ball with a velocity of 30m/s.

$$\lambda = \frac{h}{\gamma m \upsilon} = \frac{6.6 \times 10^{-34} \, J.s}{(1)(0.046 \, kg)(30 \, m/s)} = 4.8 \times 10^{-34} \, m$$

(b) An electron with a velocity of 10^7 m/s.

$$\lambda = \frac{h}{\gamma m \upsilon} = \frac{6.6 \times 10^{-34} J.s}{(1)(9.1 \times 10^{-31} kg)(10^7 m/s)} = 7.3 \times 10^{-11} m$$

Remember...

A moving body behaves in certain ways as though it has a wave nature.

WAVES OF WHAT?

Water waves \leftarrow height of the water surface varies periodically.

Sound waves \leftarrow pressure varies periodically.

Light waves \leftarrow electric and magnetic fields vary periodically.

What varies in the case of matter waves?

The quantity whose variation make up matter wave is called wave function Ψ .

The value of the wave function associated with a moving body at a particular point x, y, z in space and the time t is related to the *likelihood of finding the body there at the time*.

WAVES OF WHAT?

 Ψ has no direct physical significant \leftarrow because it cannot be interpreted in terms of an experiment (not observable)

 $|\Psi|^2$ is know as the **probability density**:

The probability of finding the body described by the wave function Ψ at the point *x*, *y*, *z* at the time *t* is proportional to the value of there at $|\Psi|^2 t$.

 $|\Psi|^2$ has values between 0 and 1.

WAVES OF WHAT?

Remember...

Matter waves are waves of probability.