WAVE PROPERTIES OF PARTICLES

- 1. De Broglie waves.
- 2. Waves of what?
- 3. Describing a wave.
- 4. Phase and group velocities.
- 5. Particle diffraction.
- 6. Particle in a box.
- 7. Uncertainty principle I.
- 8. Uncertainty principle II.
- 9. Applying the uncertainty principle.

DESCRIBING A WAVE

How fast do de Broglie waves travel?

This wave has the same velocity as the body it is associated with.

Let us call the de Broglie wave velocity υ_p then:

$$\upsilon_p = v\lambda$$
$$E = hv = \gamma mc^2 \qquad \lambda = \frac{h}{\gamma m\nu}$$

$$\upsilon_p = \nu\lambda = \left(\frac{\gamma mc^2}{h}\right) \left(\frac{h}{\gamma m\upsilon}\right) = \frac{c^2}{\upsilon} \quad \textbf{Faster}$$
 than light!!

DESCRIBING A WAVE

To resolve this we need to distinguish between **phase velocity** and **group velocity**.

DESCRIBING A WAVE

Remember...

The general formula of a wave is:

 $y = A\cos(\omega t - kx)$ ω angular frequency k wave number $= \frac{\omega}{\upsilon_p}$

De Broglie waves...

 \rightarrow the probability of finding a moving body at a particular place at a particular time.

Can we represent the de Broglie wave by a simple wave equation?

→No! Simple wave formula of an indefinite series of waves all with the same amplitude A. $y = A\cos(\omega t - kx)$

→ A wave representing a moving body must be a wave packet or wave group.

Wave packet or wave group...

A familiar example is **beats**.

How can we describe this mathematically? SUPERPOSITION!

Superposition of what?

Individual waves of different wavelengths whose interference with one another results in a variation in amplitude that defines the group shape.

 \rightarrow If the velocities of the waves are the same, the velocity of the wave group is the common phase velocity.

→ If the phase velocity varies with wavelength, the individual waves do not proceed together. ← **dispersion**!

→ the wave group has a velocity different from the phase velocities of the waves that make it up. ← de Broglie waves.

How can we calculate v_g ?

Let us assume that the wave group arises from the combination of two waves that have the same amplitude *A* but differ by an amount $\Delta \omega$ in angular frequency and Δk in wave number.

$$y_{1} = A\cos(\omega t - kx)$$

$$y_{2} = A\cos[(\omega + \Delta\omega)t - (k + \Delta k)x]$$

$$y = y_{1} + y_{2}$$

$$\cos \alpha + \cos \beta = 2\cos \frac{1}{2}(\alpha + \beta)\cos \frac{1}{2}(\alpha - \beta)$$
$$\cos(-\theta) = \cos(\theta)$$

$$y = y_1 + y_2 = 2A\cos\frac{1}{2} \left[(2\omega + \Delta\omega)t - (2k + \Delta k)x \right] \cos\frac{1}{2} (\Delta\omega t - \Delta kx)$$

$$y = y_1 + y_2 = 2A\cos\frac{1}{2} \left[(2\omega + \Delta\omega)t - (2k + \Delta k)x \right] \cos\frac{1}{2} (\Delta\omega t - \Delta kx)$$

 $\Delta \omega$ and Δk are small compared with ω and k.

 $2\omega + \Delta \omega \approx 2\omega$ $2k + \Delta k \approx 2k$

$$y = 2A\cos(\omega t - kx)\cos\left(\frac{\Delta\omega}{2}t - \frac{\Delta k}{2}x\right)$$

This is a wave of angular frequency ω and wave number *k* that has superimposed upon it a modulation of angular frequency $\Delta \omega/2$ and wave number $\Delta k/2$.

$$\upsilon_p = \frac{\omega}{k}$$
 $\upsilon_g = \frac{\Delta \omega}{\Delta k}$

For a de Broglie wave associated with a body of mass m moving with velocity v:

The angular frequency:

$$\omega = 2\pi v = \frac{2\pi \gamma mc^2}{h} = \frac{2\pi \gamma mc^2}{h\sqrt{1 - v^2/c^2}}$$

The wave number:

$$k = \frac{2\pi}{\lambda} = \frac{2\pi\gamma m\upsilon}{h} = \frac{2\pi m\upsilon}{h\sqrt{1 - \upsilon^2/c^2}}$$

Both ω and k are functions of the body's velocity υ .

What is the group velocity of de Broglie waves?

What is the group velocity of de Broglie waves?

For a de Broglie wave associated with a body of mass

$$\upsilon_g = \frac{d\omega}{dk} = \frac{d\omega/d\upsilon}{dk/d\upsilon}$$

What is the phase velocity of de Broglie waves?

$$\upsilon_p = \frac{\omega}{k} = \frac{c^2}{\upsilon}$$

It exceeds both the velocity of the body and the velocity of light.

How can this be justified?

 v_p has no physical significance because the motion of the group not the individual correspond to the motion of the body and $v_g < c$.

 \rightarrow De Broglie wave does not violate special relativity!

Example 3.3:

An electron has a de Broglie wavelength of 2.00 pm = 2.00×10^{-12} m. Find its kinetic energy and the phase and group velocities of it de Broglie waves.