ATOMIC STRUCTURE

- 1. The Nuclear Atom
- 2. Electron Orbits
- 3. Atomic Spectra
- 4. The Bohr Atom
- 5. Energy Level and Spectra
- 6. Correspondence Principle
- 7. Nuclear Motion
- 8. Atomic Excitation
- 9. The Laser

- We have assumed that the H nucleus (a proton) remains stationary while the orbital electron revolves around it.
- What must actually happen is that both nucleus and electron revolve around their common center of mass.
- The CoM is close to the nucleus.
- This system is equivalent to a single particle of mass m' that revolves around the position of the heavier particle.

The reduced mass of the electron:

$$m' = \frac{mM}{m+M}$$

Taking into account the motion of the nucleus of the H atom we replace the electron with a particle of mass m'.

$$E_n = -\frac{me^4}{8\varepsilon_o^2 h^2} \left(\frac{1}{n^2}\right)$$

$$E'_{n} = -\frac{m'e^{4}}{8\varepsilon_{o}^{2}h^{2}} \left(\frac{1}{n^{2}}\right) = \left(\frac{m'}{m}\right) \left(\frac{E_{I}}{n^{2}}\right)$$

$$\frac{m'}{m} = \frac{M}{m+M} = 0.99945$$

$$R = 1.0973731 \times 10^{7} m^{-1}$$
$$R' = 1.0967758 \times 10^{7} m^{-1}$$

Taking the nuclear motion helped in the discovery of deuterium (isotope of H).

Spectral lines of deuterium are all shifted slightly to shorter wavelengths in comparison with H spectral lines.

 H_{α} (for H, n=3 \rightarrow n=2) = 656.3 nm H_{α} (for D, n=3 \rightarrow n=2) = 656.1 nm

Remember...

The nuclear mass affects the wavelengths of spectral lines.