ATOMIC STRUCTURE

- 1. The Nuclear Atom
- 2. Electron Orbits
- 3. Atomic Spectra
- 4. The Bohr Atom
- 5. Energy Level and Spectra
- 6. Correspondence Principle
- 7. Nuclear Motion
- 8. Atomic Excitation
- 9. The Laser

How atoms are excited?

- 1. Collisions.
- 2. Photon absorption.

How atoms are excited?

- 1. Collisions.
 - Part of their joint KE is absorbed by the atom.
 - The excited atom return to its ground by emitting one or more photons after on average 10⁻⁸ s.
 - Discharge in rarefied gas occurs when an electric field accelerates electrons and atomic ions until their KE are sufficient to excite atoms they collide with.

How atoms are excited?

2. Photon absorption.

- Atoms absorb a photon of light whose energy is the right amount to raise the atom to a higher energy level.
- This process explains the origin of absorption spectra.

Franck-Hertz Experiment...

- Its an experiment to investigate energy levels inside atoms.
- It demonstrated the existence of atomic energy levels.
- The plate current was measured as a function of the accelerating potential.
- Two types of collisions occurred:
 - Elastic
 - Inelastic
- Critical potentials are due to atomic energy levels.

Remember... How atoms absorb and emit energy.

A laser is a device that produces a light beam with some remarkable properties...

- 1. Very nearly monochromatic.
- 2. Coherent (all wave are in phase).
- 3. Collimated (hardly diverges).
- 4. Very intense.

Light Amplification by Stimulated Emission of Radiation

The key to the laser is the presence of a **metastable** state.

What are the kinds of transitions involving EM radiation that are possible between two energy levels?

- 1. Stimulated absorption.
- 2. Spontaneous emission.
- 3. Stimulated emission.

Three & four level laser...

Population inversion and optical pumping.

Remember... Producing light waves in step.