PARTICLE PROPERTIES OF WAVES

- 1. Electromagnetic Waves.
- 2. Blackbody Radiation.
- 3. Photoelectric Effect.
- 4. What is Light?
- 5. X-Rays.
- 6. X-ray Diffraction.
- 7. Compton Effect.
- 8. Pair Production.
- 9. Photons and Gravity.

INTRODUCTION

In our world a wave is a wave and a particle is a particle!!

- \rightarrow Mechanics of particles.
 - Have charge.
 - Have mass.
 - Have momentum.
 - Behave according to the laws of particle mechanics.
- \rightarrow Optics of waves.
 - They exhibit diffraction.
 - Interference.
 - Polarization.

In this chapter we will look at things more deeply!!

James Clerk Maxwell suggested that electric charges generate linked electric and magnetic disturbances that can travel indefinitely through space. **Watch the two video clips (EM waves)** $E \perp B$ and both are \perp to υ

Maxwell showed that the speed *c* of EM waves in free space is:

 $c = \frac{1}{\sqrt{\varepsilon_o \mu_o}}$

Hertz proved it experimentally

same time, the instantaneous amplitude there is the sum of the instantaneous amplitudes of the individual waves.

- What does instantaneous amplitude mean?
- What does amplitude mean?
- What is the amplitude of a stretched string, stretched spring, water wave and sound wave?
- What is the amplitude of an EM wave?
 - E (E=c B but usually E is used)

What are the types of interferences?

- -Constructive interference $\leftarrow \Delta l = \lambda, 2\lambda, 3\lambda, ...$
- -Destructive interference $\leftarrow \Delta l = \lambda/2, 3\lambda/2, 5\lambda/2, ...$

- Something in between.

What is Young's double slit experiment? What is diffraction?

Thomas Young's Double Slit Experiment

If light consisted of a stream of classical particles, will it behave in the same way?

- Interference and diffraction are found only in waves.

- Young's double slit experiment proves that light consists of waves.

- Maxwell's theory what kind of wave is light waves: EM waves.

Until the end of the 19th century the nature of light seemed settled forever. And everybody were happy ©

Remember....

Coupled electric and magnetic oscillations that move with the speed of light and exhibit typical wave behavior...

Light is an electromagnetic wave...