MATHEMATICA ABC

TRAINIER: DR REEM ALTUWIRQI

<u>raltuwirqi@kau.edu.sa</u> http://raltuwirqi.kau.edu.sa

Timetable and Syllabus...

Session 1	Session 2	Session 3	Session 4	Session 5
Getting Started	User defined functions and plotting	Calculus	Vector analysis	Examples and Closing
 Syntax Packages Help Numerical calculations Built-in constants and functions Word processing 	-Variables, equations and functions - Plotting functions - Solving equations and inequalities	 Limits Derivatives Integration 	- Series - Sum - Matrices	 Some examples in physics Course project Closing
Worksheet 1	Worksheet 2	Worksheet 3	Worksheet 4	

SESSION 1: Getting Started

Starting Mathematica

- Palettes
- Activating the kernel
- Right-side brackets

			_		
Exp and [=]	• °		-		
Factor[=]					
Together[=]	_√∎			√∎	
λpart[∎]	∫∎đ⊡			∂ ₀ ∎	
Cancel[=]	L_		_		_
Simplify[=]	[∎đ⊡			∂ _{0,0} ∎	
FullSimplify[<u>J.</u>			-	_
TrigExpand[=]	5 •			n 🏻	
TrigFactor[=]					
TrigReduce[=]	(:::)				
ExpToTrig[- [[]]		
TrigToExp[=]	πeg		'n	. ∞	°
PowerExpand[=]	×	÷	м	\rightarrow	$: \rightarrow$
ComplexExpand[B]		≠	≤	≥	⇒
,	7	۸	٧	U	\cap
	α	β	Y	δ	e
	ζ	η	θ	ĸ	λ
	μ	γ	ξ	π	ρ
	σ	τ	ø	φ	χ
	\$	ω	г	Δ	۲
	Λ	Ξ	Φ	_	Ω
	•			Ê	Ê

Mathematica Syntax

Five Basic Rules of Mathematica Syntax

- The arguments of functions are given in brackets
 [....]
- Every word of a built-in Mathematica function begins with a capital letter, e.g. Sin[x]
- Multiplication is represented by a * or space between characters. Enter 2*x*y or 2 x y to evaluate 2xy not 2xy.
- □ Powers are denoted by ^. Enter $(8*x^3)^{(1/3)}$ to evaluate $(8x^3)^{(1/3)} = 8^{1/3}(x^3)^{1/3} = 2x$ instead of $8x^{1/3}$ which returns 8x/3
- □ Mathematica follows the order of operations exactly. Thus, entering $(1+x)^{1/x}$ returns $\frac{(1+x)^{1}}{x}$ while $(1+x)^{1/x}$ returns $(1+x)^{1/x}$

Loading Packages

👯 Mathematica Help B	rowser				
Graphics	`FilledPlot`	Go 🔺	•		
Built-in Functions	Add-ons & Links	The Mathematica Boo	ok Front End	Getting Started	Tour Demos
Wolfram Research Pro Standard Packages Combinatorica AuthorTools DatabaseLink CILING GLING Graphics Fill) 	Algebra Calculus DiscreteMath Geometry Graphics LinearAlgebra) (A)) (A)	ComplexMap ContourPlot3D FilledPlot Graphics Graphics3D ImplicitPlot	
Fil		ot[f, {x, xmin, xmax] }, {x, xmin, xmax]			ace between the curve a ach successive pair of c
Generating filled plots.					
This loads th					
Here is a basi	ic fill between the curve	e and the axis.			
-0.5 -1	t[Sin[x], {x, 0,	2 Pi}]			
Out[2]= - Graphics	3 -				
This fills bety	ween the first and seco	nd curve and the second and	third curve.		
In 131:= FilledPlo	t[{Sin[x], Cos[z 100% • <	x^2/18).	11	1	
Exams	👔 Mathematica	Adobe Rea	✓ IW 4 Microsoft	1	oft Pow 🧎 🌟 M

- Mathematica contains many built-in functions that are loaded immediately when called.
- Some other functions are contained in packages that must be loaded separately to minimize memory requirements.
- A list of available package groups are in the help facility
- □ Example, Graphics → FilledPlot

Getting Help

- Becoming competent with Mathematica can take a great time!
- Errors can rise so do not get frustrated!
- Error's messages can indicate where the errors occurred.
- You can access
 Mathematica's help facility directly from the menu.
- □ Using ? And ?? \rightarrow ?Plot, ?Int*
- Tour of Mathematica

Numerical Calculations

- Basic arithmetic operations are preformed in the natural way
- \Box a plus b \rightarrow a+b
- \Box a minus b \rightarrow a-b
- \square a times b \rightarrow a*b
- \square a divided by b \rightarrow a/b
- \square a raised to the power b \rightarrow a^b

Numerical Calculations

Numerical Calculations

 \Box The term $a^{n/m}$ when n/m = 1/2 we can use the command Sqrt[a]. Example: Compute 1. $\sqrt{27}$ 2. Use N[....] 3. $(-27/64)^{(2/3)}$ 4. Use N[...] 5. Repeat 3 by hand <<Miscellaneous 'RealOnly'

Built-in Constants

Mathematica has built-in definitions of commonly used constants.

- □ e ≈ 2.71828 → E
- $\square \ \pi \approx 3.14159 \rightarrow \text{Pi}$
- i = √-1 → I, complex arithmetic is done automatically. Re[z], Im[z], Conjugate[z], Abs[z], Arg[z]
- Example: Compute
 - □ N[e,50]
 - □ (3+i) / (4-i)

- Exp[x] : exponential function
- Log[x] : natural logarithm
- Abs[x] : absolute value
- Sin[x], Cos[x], Tan[x], Sec[x], Csc[x] and Cot[x] : trigonometric functions
- ArcSin[x], ArcCos[x], ArcTan[x], ArcSec[x], ArcCsc[x] and ArcCot[x] : inverse trigonometric functions
- Sinh[x], Cosh[x] and Tanh[x] : hyperbolic trigonometric functions

- N[Exp[-5]]
- Log[Exp[x]]
- Exp[Log[4]]
- **Δbs[-***π*]
- Sin[$\pi/12$] → add N[....]

- Example: What does these functions do? If you don't know how can you find out?
 - TrigExpand
 - TrigReduce
 - ExpToTrig
 - TrigToExp
 - Simplify

- $Cos[x]^2 + Sin[x]^2$
- Simplify the last expression
- TrigExpand[Cos[3x]]
- TrigReduce[Sin[3x] Cos[4x]]
- ExpToTrig[1/2 (Exp[x]+Exp[-x])]
- TrigToExp[Sin[x]]

Word Processing in Notebooks

- Font
- Size
- Text color
- Background color
- Word wrapping
- Justification
- Style
- Text alignment
- Check spelling can be found under Edit
- Inserting a formula in a text cell (Press CTRL 9) then use keystrokes
- Copy and paste between cells as usual

Word Processing in Notebooks

Example:

- Change the background color of your cell
- Change the content of a cell to text style
- Insert a formula into a text cell

Please solve the question given to you in worksheet 1

SESSION 2: User Defined Functions and Plotting

Variables, Equations and Functions

- □ To define a variable:
 - $\mathbf{x} = \mathbf{a}$ (begins with a small letter)
- □ To define an equation:
 - eq==a ; x+5==b
- □ To define a function:
 - □ f[x_]:= expression in x
 - Evaluate a function: f[a]

Plotting Functions

- □ To plot a function:
 - Plot[f[x],{x,a,b}]
- Example:
 - Expand (2x+1)(3x-1)(x-1)
 - Define a function f(x) and make its form the previous expanded terms
 - □ Plot the function f(x) with -1 < < x < < 3/2

Solving Equations and Inequalities

- □ To solve an equation we use:
 - Solve[lhs==rhs,x]
- To solve a system of equations:
 - Solve[{system of equations},{variables}]
- To solve an inequality (load package):
 - InequalitySolve[inequality,x]
- Solving equation by finding the root:
 - FindRoot[equation of x, {x,a}]

Solving Equations and Inequalities

Example:

- Solve the equation $x^2 1 = 0$
- **Solve the inequality** $4 x^2 \ge 0$
- Solve the system of equations x = y 1

$$x^2 = 2y + 6$$

Solve $eq = x^2 + bx + 1$ then substitute b=9, you should get two roots.

More Plotting

 To graph the parametric equations x = x(t), y = y(t), a ≤ t ≤ b we use: ParametricPlot[{x[t],y[t]},{t,a,b}]
 To graph a polar function r = r(θ), α ≤ θ ≤ β

we use:

PolarPlot[r[theta],{theta,alpha,beta}]

More Plotting

 3D plotting we use: Plot3D[f[x,y],{x,a,b},{y,c,d}]
 We can also do a contour plot using ContourPlot[f[x,y],{x,a,b},{y,c,d}]

More Plotting

Example:

• Graph the parametric equation $x = Cos(5t), y = Sin(3t), 0 \le t \le 2\pi$

Graph a polar function

 $r = Cos(8\theta/3), 0 \le \theta \le 6\pi$

■ Do a 3D plot and a contour plot of $Sin(xy), 0 \le x \le 4, 0 \le y \le 4$

Please solve the question given to you in worksheet 2

Happy Face Math

SESSION 3: Calculus

Limits...

Derivatives...

- □ We can find the derivative by using its definition: $\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}$
- Or by using the function D and ':
 D[f[x],x] , f'[x], f''[x], D[f[x],{x,n}]
 D[f[x,y],{x,n},{y,m}]
- Example:
 - Write the following command
 D[f[x] g[x],x]
 - Compute the first and second derivative of:

$$f(x) = 4x^5 - \frac{5}{2}x^4 - 10x^3$$

Integration...

- We can integrate a function by using: Integrate[f[x],x]
- We can also perform definite integration Inegrate[f[x],{x,a,b}]
 Integrate[f[x,y],{y,ymin,ymax},{x,xmin,xmax}]
- When we can't get an exact solution of the integration, we can use a numerical approximation t the integral NIntegrate[f[x],{x,a,b}]
- Example:
 - Evaluate

$$\int_{1}^{4} (2x^2 + 1) / \sqrt{x} dx$$

Please solve the question given to you in worksheet 3

PETER 1.21 14.00 1 for-(2) Expand (a+b) = (a + b)" 2 N =(a ь + b)n = la eP. etc ...

SESSION 4: Series, Sums and Matrices

Sums and Series...

- We can obtain the sum of a series by writing:
 - $Sum[a[k], \{k, 1, \infty\}]$
- We can find the Maclaurin series or the Taylor series using:
 - Series[f[x],{x,x0,n}]
- Example:
 - Execute Series[Cos[x],{x,0,4}]

Vectors and Matrices...

□ We can define a vector as: $r = \{x, y, x\}, r1 = \{x1, y1, z1\}$ Operations on vectors: r-r1 a r \leftarrow scalar multiplied by a vector r.r1 \leftarrow dot product $Cross[r,r1] \leftarrow cross product$ \Box Array[v,n] \leftarrow n-dimensional vector Table[f[k],{k,n}] \square {a,b}=Take[{I,m,n},2]

Vectors and Matrices...

□ MatrixForm[name] ← output form \Box Det[A] \leftarrow determinant of a matrix \Box Inverse[A] \leftarrow inverse of a matrix \Box Transpose[A] \leftarrow transpose of a matrix \square Part[A,I,j] \leftarrow gives the element Aij IdentityMatrix[n] for an nxn matrix DiagonalMatrix[list], list={a,b,c,d,...}

Please solve the question given to you in worksheet 4

Some Examples in Physics

Interference and diffraction from multiple slits

Fourier transform

- \Box Clear variable before using them! Clear[x] or x=.
- Don't say I don't know!! Use ? or ??
- \Box /. Frustration \rightarrow fun

"Go for it, Sidney! You've got it! You've got it! Good hands! Don't choke!"

So much more...

- Differential equations
- Animations
- Fitting data
- Programming
- Iterations (Do, For, While)
- □ Visit <u>www.wolfram.com</u>

"Are you sure you're not assigning too much homework? — I don't want to end up *overqualified.*"

Your Project...

Must be handed in by the end of the second week of next semester

Wednesday 23/3/1432 H

Submission through email: raltuwirqi@kau.edu.sa