MATHEMATICA ABC

TRAINIER: DR REEM ALTUWIRQI

Timetable and Syllabus...

Session 1	Session 2	Session 3	Session 4	Session 5
Getting Started	User defined functions and plotting	Calculus	Vector analysis	Examples and Closing
- Syntax - Packages - Help - Numerical calculations - Built-in constants and functions - Word processing	-Variables, equations and functions - Plotting functions - Solving equations and inequalities	- Limits - Derivatives - Integration	- Series - Sum - Matrices	- Some examples in physics - Course project - Closing
Worksheet 1	Worksheet 2	Worksheet 3	Worksheet 4	

SESSION 1: Getting Started

Starting Mathematica

Menu\square Palettes
\square Activating the kernel
\square Right-side brackets

Mathematica Syntax

Five Basic Rules of Mathematica Syntax

\square The arguments of functions are given in brackets [....]
\square Every word of a built-in Mathematica function begins with a capital letter, e.g. $\operatorname{Sin}[x]$
\square Multiplication is represented by a * or space between characters. Enter $2^{*} x^{*} y$ or $2 x y$ to evaluate $2 x y$ not $2 x y$.
\square Powers are denoted by ${ }^{\wedge}$. Enter $\left(8^{*} x^{\wedge} 3\right)^{\wedge}(1 / 3)$ to evaluate $\left(8 x^{3}\right)^{(1 / 3)}=8^{1 / 3}\left(x^{3}\right)^{1 / 3}=2 x$ instead of $8 x^{\wedge} 1 / 3$ which returns $8 x / 3$
\square Mathematica follows the order of operations exactly. Thus, entering $(1+\mathrm{x})^{\wedge} 1 / \mathrm{x}$ returns $\frac{(1+x)^{1}}{x}$ while $(1+x)^{\wedge}(1 / x)$ returns $(1+x)^{1 / x}$

Loading Packages

Graphics `FilledPlot`
FilledPlot $\left[f,\left\{\begin{array}{ll}x, & x \min , \\ x & x a x\}\end{array}\right] \quad\right.$ plot f using the variable x, with the space between the curve :
FilledPlot $\left[\left\{f_{1}, f_{2}, \ldots\right\},\{x, x \min , x \max \}\right]$ plot the f_{j}, filling the space between each successive pair of c
Generating filled plots.
This loads the package.
$\ln [1]=\lll$ Graphics `FilledPlot

> Here is a basic fill between the curve and the axis.
$\ln [2]=$ FilledPlot $[\operatorname{Sin}[x],\{x, 0,2$ Pi $\}]$

This fills between the first and second curve and the second and third curve
FilledPlot $\left[\left\{\operatorname{Sin}[x], \operatorname{Cos}[x] \quad x^{\wedge} 2 / 18\right)\right.$.
100%
\square Mathematica contains many built-in functions that are loaded immediately when called.
\square Some other functions are contained in packages that must be loaded separately to minimize memory requirements.
\square A list of available package groups are in the help facility
\square Example, Graphics \rightarrow FilledPlot

Getting Help

Numerical Calculations

\square Basic arithmetic operations are preformed in the natural way
\square a plus $b \rightarrow a+b$
$\square a$ minus $b \rightarrow a-b$
\square a times $b \rightarrow a * b$
\square a divided by $b \rightarrow a / b$
$\square a$ raised to the power $b \rightarrow a^{\wedge} b$

Numerical Calculations

Numerical Calculations

\square The term $a^{n / m}$ when $n / m=1 / 2$ we can use the command Sqrt[a].
\square Example: Compute

1. $\sqrt{27}$
2. Use $\mathrm{N}[. .$.]
3. $(-27 / 64)^{\wedge}(2 / 3)$
4. Use $\mathrm{N}[. .$.
5. Repeat 3 by hand
<<Miscellaneous 'RealOnly'

Built-in Constants

\square Mathematica has built-in definitions of commonly used constants.
$\square \mathrm{e} \approx 2.71828 \rightarrow \mathrm{E}$
$\square \approx 3.14159 \rightarrow \mathrm{Pi}$
$\square i=\sqrt{-1} \rightarrow$ I, complex arithmetic is done automatically. $\operatorname{Re}[z], \operatorname{Im}[z]$, Conjugate[z], Abs[z], $\operatorname{Arg}[z]$
\square Example: Compute
$\square \mathrm{N}[\mathrm{e}, 50]$
$\square(3+i) /(4-i)$

Built-in Functions

\square Mathematica contains numerous mathematical functions.

- $\operatorname{Exp}[x]$: exponential function
- Log[x]: natural logarithm
- Abs $[x]$: absolute value
$\square \operatorname{Sin}[x], \operatorname{Cos}[x], \operatorname{Tan}[x], \operatorname{Sec}[x], \operatorname{Csc}[x]$ and $\operatorname{Cot}[\mathrm{x}]$: trigonometric functions
$\square \operatorname{ArcSin}[x], \operatorname{ArcCos}[x], \operatorname{ArcTan}[x], \operatorname{ArcSec}[x]$, $\operatorname{ArcCsc}[x]$ and $\operatorname{ArcCot}[x]$: inverse trigonometric functions
- Sinh[x], Cosh[$x]$ and Tanh $[x]$: hyperbolic trigonometric functions

Built-in Functions

\square Example: Compute

- N[Exp[-5]]
- $\log [\operatorname{Exp}[x]]$
- Exp[Log[4]]
\square Abs[- $\pi]$
$\square \operatorname{Sin}[\pi / 12] \rightarrow$ add $N[\ldots$.

Built-in Functions

\square Example: What does these functions do? If you don't know how can you find out?

- TrigExpand
- TrigReduce
\square ExpToTrig
- TrigToExp
\square Simplify

Built-in Functions

\square Example: Compute
$\square \operatorname{Cos}[x]^{\wedge} 2+\operatorname{Sin}[x]^{\wedge} 2$

- Simplify the last expression
\square TrigExpand[Cos[3x]]
- TrigReduce[Sin[3x] Cos[4x]]
$\square \operatorname{Exp} T o T r i g[1 / 2(\operatorname{Exp}[x]+\operatorname{Exp}[-x])]$
\square TrigToExp[Sin[x]]

Word Processing in Notebooks

\square You can set the following cell options from the Format menu

- Font
- Size
- Text color
- Background color
- Word wrapping
- Justification
- Style
- Text alignment
\square Check spelling can be found under Edit
\square Inserting a formula in a text cell (Press CTRL 9) then use keystrokes
\square Copy and paste between cells as usual

Word Processing in Notebooks

Example:
\square Change the background color of your cell
\square Change the content of a cell to text style
\square Insert a formula into a text cell

Work Session

Please solve the question given to you in worksheet 1

OK CALVIN LETS CHECK OER YOUR MATH HOMEWORK.			YON CANT ADD THINGS AND COME OUT WITH LESS THAN YOU STARTED WITR?	

SESSION 2: User Defined Functions and Plotting

Variables, Equations and Functions

\square To define a variable:

- $\mathrm{x}=\mathrm{a}$ (begins with a small letter)
\square To define an equation:
- eq==a; $x+5==b$
\square To define a function:
- $f[x]$:= expression in x
\square Evaluate a function: $\mathrm{f}[\mathrm{a}]$

Plotting Functions

\square To plot a function:

- $\operatorname{Plot}[f[x],\{x, a, b\}]$
\square Example:
- Expand $(2 x+1)(3 x-1)(x-1)$
- Define a function $f(x)$ and make its form the previous expanded terms
\square Plot the function $f(x)$ with $-1 \ll x \ll 3 / 2$

Solving Equations and Inequalities

\square To solve an equation we use:

- Solve[lhs==rhs,x]
\square To solve a system of equations:
- Solve[\{system of equations\},\{variables\}]
\square To solve an inequality (load package):
- InequalitySolve[inequality,x]
\square Solving equation by finding the root:
\square FindRoot[equation of $x,\{x, a\}$]

Solving Equations and Inequalities

\square Example:

- Solve the equation $x^{2}-1=0$
\square Solve the inequality $4-x^{2} \geq 0$
\square Solve the system of equations

$$
\begin{aligned}
& x=y-1 \\
& x^{2}=2 y+6
\end{aligned}
$$

\square Solve $e q=x^{2}+b x+1$ then substitute $b=9$, you should get two roots.

More Plotting

\square To graph the parametric equations

$$
x=x(t), y=y(t), a \leq t \leq b
$$

we use:
ParametricPlot $[\{x[t], y[t]\},\{t, a, b\}]$

- To graph a polar function

$$
r=r(\theta), \alpha \leq \theta \leq \beta
$$

we use:
PolarPlot[r[theta],\{theta,alpha,beta\}]

More Plotting

\square 3D plotting we use: Plot3D[f[x,y],\{x,a,b\},\{y,c,d\}]
\square We can also do a contour plot using
ContourPlot $[f[x, y],\{x, a, b\},\{y, c, d\}]$

More Plotting

\square Example:

- Graph the parametric equation

$$
x=\operatorname{Cos}(5 t), y=\operatorname{Sin}(3 t), 0 \leq t \leq 2 \pi
$$

\square Graph a polar function

$$
r=\operatorname{Cos}(8 \theta / 3), 0 \leq \theta \leq 6 \pi
$$

\square Do a 3D plot and a contour plot of

$$
\operatorname{Sin}(x y), 0 \leq x \leq 4,0 \leq y \leq 4
$$

Work Session

Please solve the question given to you in worksheet 2

Happy Face Math

$$
\begin{aligned}
&)^{-1}=\text { (} \quad \operatorname{Re}(())=\bigcirc\right)^{\text {oi's }} \\
& \dot{O}^{2}=\ddot{\ddot{O}} \quad \operatorname{Im}(())=\cdots \\
& \dot{O}^{3}=\nabla \times(\Theta)=\nabla
\end{aligned}
$$

$$
\begin{aligned}
& \partial(O)=C \quad \log (O)=B \\
& \boldsymbol{\operatorname { s i n }}(\Theta)=\stackrel{\ominus}{+}
\end{aligned}
$$

SESSION 3: Calculus

\square For finding limits we use:
Limit[f[x],x->a]
\square a can be $+/$ - infinity just write Infinity
\square Example:
Plot the function $\frac{\operatorname{Sin} 3 x}{x}$ then find its limit
when $\mathrm{x} \rightarrow 0$

Derivatives...

\square We can find the derivative by using its definition:

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

\square Or by using the function D and ': $D[f[x], x], f^{\prime}[x], f "[x], D[f[x],\{x, n\}]$ $D[f[x, y],\{x, n\},\{y, m\}]$
\square Example:
\square Write the following command D[ffx] g[x],x]
\square Compute the first and second derivative of:

$$
f(x)=4 x^{5}-\frac{5}{2} x^{4}-10 x^{3}
$$

Integration...

\square We can integrate a function by using: Integrate[f[x],x]
\square We can also perform definite integration Inegrate[f[x],\{x,a,b\}] Integrate $[f[x, y],\{y, y m i n, y m a x\},\{x, x \min , x \max \}]$
\square When we can't get an exact solution of the integration, we can use a numerical approximation \dagger the integral
Nintegrate[f[x],\{x,a,b\}]
\square Example:

- Evaluate

$$
\int_{1}^{4}\left(2 x^{2}+1\right) / \sqrt{x} d x
$$

Work Session

Please solve the question given to you in worksheet 3

PETER
4.) Expand

$$
x^{3}+x-2
$$

$$
?
$$

$$
\begin{aligned}
& =(a+b)^{n} \\
& =(a+b)^{2} \\
& =(a
\end{aligned}
$$

SESSION 4: Series, Sums and Matrices

Sums and Series...

\square We can obtain the sum of a series by writing:
Sum $[a[k],\{k, 1, \infty\}]$
\square We can find the Maclaurin series or the Taylor series using:
Series $[f[x],\{x, x 0, n\}]$
\square Example:
\square Execute Series[Cos[x],\{x,0,4\}]

Vectors and Matrices...

\square We can define a vector as:
$r=\{x, y, x\}, r 1=\{x 1, y 1, z 1\}$
\square Operations on vectors:
r-r 1
a $r \leftarrow$ scalar multiplied by a vector
r.r $1 \leftarrow$ dot product

Cross[r,rl] \leftarrow cross product
\square Array $[\mathrm{v}, \mathrm{n}] \leftarrow \mathrm{n}$-dimensional vector
\square Table[f[k],\{k,n\}]
$\square\{a, b\}=$ Take[\{l,m,n\},2]

Vectors and Matrices...

\square MatrixForm[name] \leftarrow output form
$\square \operatorname{Det}[A] \leftarrow$ determinant of a matrix
\square Inverse[A] \leftarrow inverse of a matrix
\square Transpose[A] \leftarrow transpose of a matrix
$\square \operatorname{Part}[A, I, i] \leftarrow$ gives the element $A i j$
\square IdentityMatrix[n] for an nxn matrix
\square DiagonalMatrix[list], list=\{a,b,c,d,...\}

Work Session

Please solve the question given to you in worksheet 4

Some Examples in Physics

\square Interference and diffraction from multiple slits
\square Fourier transform

Notes...

\square Clear variable before using them! Clear $[x]$ or $x=$.
\square Don't say I don't know!! Use? or ??
$\square /$. Frustration \rightarrow fun

"Go for it, Sidneyl You've got if You've got it Good hands! Don't chokel ${ }^{\text {P }}$

So much more...

\square Differential equations
\square Animations
\square Fitting data
\square Programming
\square Iterations (Do, For, While)
\square Visit www.wolfram.com

"Are you sure you're not assigning too much homework? - I don't want to end up overqualified."

Your Project...

Must be handed in by the end of the second week of next semester

Wednesday 23/3/1432 H

Submission through email: raltuwirqi@kau.edu.sa

